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ABSTRACT: Efficient and accurate analytical tools are needed in earthquake engineering to
propagate uncertainties from the seismic input and finite element (FE) model parameters to a
probabilistic estimate of the seismic performance through advanced large-scale nonlinear simu-
lations based on the same FE models as those used in deterministic analysis. Sensitivities of the FE
response with respect to both model and loading parameters represent an essential ingredient
in studying this complex propagation of uncertainties. This chapter presents recent develop-
ments in FE response sensitivity analysis based on the Direct Differentiation Method (DDM)
for displacement-based, force-based, and three-field mixed finite elements. First-Order Second-
Moment (FOSM) approximations of the first- and second-order statistics of the response of
structural systems with random/uncertain parameters and subjected to deterministic quasi-static
and/or dynamic loads are obtained using DDM-based FE response sensitivities and compared
to Monte Carlo simulation results. The probability of a structural response quantity exceeding
a specified threshold level is evaluated using the First-Order Reliability Method (FORM) com-
bined with DDM-based FE response sensitivities in the search for the “design point(s)’’ (DPs).
Both time-invariant and time-variant problems are considered. The geometry of limit-state sur-
faces near the DP(s) is explored in subspaces defined by planes of major principal curvatures.
This geometry explains the lack of accuracy of FORM-based solutions in some cases and sug-
gests the development of new improved solution strategies, e.g., the Design Point – Response
Surface – Simulation (DP-RS-Sim) method. The examples presented in this study include both
structural systems and soil-foundation-structure interaction systems and are based on two types
of analysis which are used extensively in earthquake engineering, namely pushover analysis and
time history analysis.

1 Introduction

Providing a structure with the capability of achieving a target performance over its
design life-time is a challenging task for structural engineers. In order to complete this
task successfully, the engineer must account correctly during the design process for the
existing aleatory and epistemic uncertainties. Thus, proper methods are required for
propagating uncertainties from model parameters describing the geometry, the material
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behaviours and the applied loadings to structural response quantities used in defining
performance limit-states. These methods need also to be integrated with methodologies
already well-known to practicing engineers, such as the finite element (FE) method.

This study presents recent developments in response sensitivity, probabilistic
response and reliability analyses of structural and geotechnical systems in a general-
purpose framework for nonlinear FE response analysis. Current advances are high-
lighted which cover relevant gaps between response sensitivity computation using the
Direct Differentiation Method (DDM) and state-of-the-art FE response-only analysis.
This work shows extensions of the DDM which were required for efficient computa-
tion of FE response sensitivities of structural and Soil-Foundation-Structure-Interaction
(SFSI) systems. Response sensitivity analyses are performed and used in application
examples to gain insight into the relative importance of model parameters with regard
to system response. Response sensitivities are essential tools in studying the propaga-
tion of uncertainties in nonlinear dynamic analysis of structural and SFSI systems.

Examples of probabilistic response analysis using the mean-centred First-Order
Second-Moment (FOSM) approximation, time-invariant (First- and Second-Order
Reliability Methods, FORM and SORM) and time-variant (mean outcrossing rate
computation) reliability analyses are provided to illustrate the methodology presented
and its current capabilities and limitations.

A new multidimensional visualization technique is introduced to study the topology
of limit-state surfaces near their design point(s) (DPs). A hybrid reliability analy-
sis method, developed using the insight gained from this visualization technique, is
introduced and illustrated through an application example.

The response sensitivity, probabilistic response and reliability analysis methods pre-
sented are based on nonlinear FE quasi-static pushover and time-history analyses,
which are used extensively in earthquake engineering and referred to by structural
design codes.

2 Finite element response sensitivity analysis

FE response sensitivities represent an essential ingredient for gradient-based optimiza-
tion methods needed in various subfields of structural engineering such as structural
optimization, structural reliability analysis, structural identification, and FE model
updating (Ditlevsen & Madsen 1996, Kleiber et al. 1997). Furthermore, FE response
sensitivities are extremely useful for gaining deeper insight into the effect and rela-
tive importance of system and loading parameters with regard to structural response.
The computation of FE response sensitivities to geometric, material and loading
parameters requires extension of the FE algorithms for response-only computation.
If r denotes a generic scalar response quantity, the sensitivity of r with respect to the
geometric, material or loading parameter θ is defined mathematically as the partial
derivative of r with respect to parameter θ, considering both explicit and implicit
dependencies, evaluated at θ= θ0, with θ0 =nominal value taken by the sensitivity
parameter θ for the FE response analysis.

Response sensitivity computation can be performed using different methods, such as
the forward/backward/central Finite Difference Method (FDM) (Kleiber et al. 1997,
Conte et al. 2003, 2004), the Adjoint Method (AM) (Kleiber et al. 1997), the Pertur-
bation Method (PM) (Kleiber & Hien 1992), and the Direct Differentiation Method
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(DDM) (Kleiber et al. 1997, Conte 2001, Conte et al. 2003, 2004, Gu & Conte 2003,
Barbato & Conte 2005, 2006, Zona et al. 2005, 2006, Barbato et al. 2006, 2007,
Gu et al. 2007a). The FDM is the simplest method for response sensitivity computa-
tion, but is also computationally expensive and can be negatively affected by numerical
noise (Haftka & Gurdal 1993, Gu & Conte 2003). The AM is extremely efficient for
linear and nonlinear elastic structural systems/models, but is not as efficient compu-
tationally as other methods when nonlinear hysteretic material constitutive models
are employed (Kleiber et al. 1997). The PM is computationally efficient but generally
not very accurate. The DDM, on the other hand, is very general, efficient and accu-
rate and is applicable to any material constitutive model. These advantages can be
obtained at the one-time cost of differentiating analytically the space- (finite element)
and time- (finite difference) discrete equations governing the structural response and
implementing these algorithms for “exact’’ derivative computation in a FE code.

According to the DDM, the consistent FE response sensitivities are computed at
each time step, after convergence is achieved for response computation. Response
sensitivity calculation algorithms impact the various hierarchical layers of FE response
calculation, namely: (1) the structure level, (2) the element level, (3) the integration
point (section for frame/truss elements) level, and (4) the material level. Details on the
derivation of the DDM sensitivity equation at the structure level and at the element
level for classical displacement-based finite elements, specific software implementation
issues, and properties of the DDM in terms of efficiency and accuracy can be found
elsewhere (Kleiber et al. 1997, Conte 2001, Conte et al. 2003, Gu & Conte 2003). In
this study, some newly developed algorithms and recent extensions are presented which
cover relevant gaps between state-of-the-art FE response-only analysis and response
sensitivity computation using the DDM.

2.1 Response sensit iv ity algorithm for force-based
frame elements

Recent years have seen great advances in nonlinear analysis of frame structures. These
advances were led by the development and implementation of force-based elements
(Spacone et al. 1996), which are superior to classical displacement-based elements in
tracing material nonlinearities such as those encountered in reinforced concrete beams
and columns. In the classical displacement-based frame element, the cubic and linear
Hermitian polynomials used to interpolate the transverse and axial displacement fields,
respectively, are only approximations of the actual displacement fields in the presence
of non-uniform beam cross-section and/or nonlinear material behaviour. On the other
hand, force-based frame element formulations stem from equilibrium between section
and nodal forces, which can be enforced exactly in the case of a frame element. The
exact flexibility matrix can be computed for an arbitrary (geometric) variation of the
cross-section and for any section/material constitutive law. Thus, force-based elements
enable, at no significant additional computational costs, a drastic reduction in the
number of elements required for a given level of accuracy in the simulated response of
a FE model of a frame structure.

The established superiority of force-based over classical displacement-based frame
elements for response-only computation motivated the extension of the DDM to
force-based frame elements. The problem is conceptually more complicated for the
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Figure 1 Applied horizontal force versus horizontal roof displacement of different FE meshes:
(a) using force-based frame elements and (b) using displacement-based frame elements.

force-based than for the displacement-based element, since in the former no simple
direct relation exists between section deformations and the element end deformations.
In fact, while equilibrium is enforced in strong form, compatibility is enforced only in
weak form over the element. The solution to this problem has been derived and pre-
sented elsewhere (Conte et al. 2004). This solution requires solving, at the element level
and at each load/time step, a system of linear equations (the size of which depends on
the number of integration points for the element) having as unknown the sensitivities
of section deformations and element nodal forces. These quantities are necessary for
the solution of the sensitivity equation at the structure level. An alternative solution,
which does not require solving a system of linear equations at the element level, has
been developed and presented in Scott et al. (2004).

The benefit of using force-based instead of displacement-based frame elements has
been found even more conspicuous when accurate and efficient computation of struc-
tural response sensitivities to material and loading parameters is required in addition
to response-only computations (Barbato & Conte 2005). This benefit in terms of
improved accuracy and efficiency increases with the complexity of the structural system
being analyzed. As application example, a statically indeterminate two-dimensional
single-story single-bay steel frame (shown in the inset of Figure 1(a)) with distributed
plasticity (modelled by using a Von Mises J2 plasticity section constitutive law, see
Conte et al. 2003) subjected to a horizontal force P at roof level is presented in this
work. Details on the mechanical and geometric properties of the structure and on
its modelling can be found in Barbato & Conte (2005). For this simple structure,
closed-form solutions are available for horizontal roof displacement and its sensitivities
to material parameters as functions of P. Figures 1(a) and (b) compare the force-
displacement results in the horizontal direction obtained from FE analyses employing
different meshes of force-based and displacement-based frame elements, respectively.
Similarly, Figures 2(a) and (b) compare the sensitivity to the kinematic hardening
modulus of the horizontal displacement obtained from FE analyses employing dif-
ferent meshes of force-based and displacement-based frame elements, respectively. It is
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Figure 2 Sensitivities of roof displacement to kinematic hardening modulus for different FE
meshes: (a) using force-based frame elements and (b) using displacement-based frame
elements.

found that convergence of the FE response to the exact solutions is much faster when
force-based elements are employed and this trend is more pronounced for FE response
sensitivities.

2.2 Response sensit iv ity algorithm for three-f ield
mixed formulation elements

A large body of research has been devoted to mixed FE formulations in the last 30
years. Several finite elements based on different variational principles have been devel-
oped (Washizu 1975, Belytschko et al. 2000) and relationships among them have been
established. Accuracy and performance have been thoroughly analyzed and improved
and important properties have been recognized and explained, such as equivalence
between various stress recovery techniques and ability to eliminate shear-locking effects
for specific applications (Belytschko et al. 2000). After more than three decades of
research, mixed finite elements are now well established and largely adopted tools in
a wide range of structural mechanics applications. Therefore, the advantage of
extending the DDM to finite elements based on a mixed formulation is evident.

The DDM algorithm for a three-field mixed formulation based on the Hu-Washizu
functional (Washizu 1975) has been derived and presented elsewhere (Barbato et al.
2007). This formulation stems from the differentiation of basic principles (equilib-
rium, compatibility and material constitutive equations), applies to both material and
geometric nonlinearities, is valid for both quasi-static and dynamic FE analysis and con-
siders material, geometric and loading sensitivity parameters. This general formulation
has also been specialized to frame elements and linear geometry (small displacements
and small strains).

2.3 Extension of the DDM to steel-concrete
composite frame structures

The last decade has seen a growing interest in FE modelling and analysis of steel-
concrete composite structures, with applications to seismic resistant frames and bridges



Tsompanakis-2-ch002.tex 13/11/2008 14: 19 Page 26

26 Computat iona l s tructura l dynamics and earthquake eng ineer ing

ϕ1 P

4.00 m 5.00 m

ϕ2 ν3

(a)

(b)

0

50

100

150

200

250

(c)
0 10 20 30 40 50 60

n (mm)

P 
(k

N
)

}Experimental

Numerical

Upward deflection at mid-point of non-loaded span

Downward deflection at
mid-point of loaded span

Figure 3 Application example of steel-concrete composite structure: (a) geometry and loading,
(b) FE degrees of freedom and (c) comparison of experimental and numerical results.

(Spacone & El-Tawil 2004). The behaviour of composite beams (made of two com-
ponents connected through shear connectors to form an interacting unit) is significantly
influenced by the type of connection between the steel beam and the concrete slab.
Flexible shear connectors allow the development of partial composite action. Thus,
for accurate analytical response prediction, structural models of composite structures
must account for the interlayer slip between the steel and concrete components. A
composite beam finite element able to capture the interface slip is therefore an essential
tool for model-based response simulation of steel-concrete composite structures.

Compared to common monolithic beams, composite beams with deformable shear
connection present additional difficulties. Even in very simple structural systems (e.g.,
simply supported beams), complex distributions of the interface slip and force can
develop. Different finite elements of composite beams with deformable shear connec-
tion have been developed and presented in the literature (Spacone & El-Tawil 2004,
Dall’Asta & Zona 2004). These elements include suitable models describing section
deformations in order to compute the section force resultants of steel-concrete com-
posite members. This requires the use of realistic material constitutive models for beam
steel, reinforcement steel, concrete, and shear-slip behaviour of the studs connecting
the two structural components (Zona et al. 2005, 2006, Barbato et al. 2007).

The DDM has recently been extended for response sensitivity computation of
steel-concrete composite frame structures (Zona et al. 2005, 2006, Barbato et al.
2007). Thus, advanced finite elements incorporating the deformable shear-connection
between the two structural components of steel-concrete composite structures can be
used for efficient computation of both the response and response sensitivity. Figure 3(a)
depicts the configuration and loading condition of a two-span asymmetric continuous
steel-concrete composite beam for which experimental data are available. Figure 3(b)
shows the degrees of freedom of the frame element (with deformable shear connection)
used in modelling this beam structure. Experimental and numerical simulation results
are compared in Figure 3(c). It is seen that their agreement is very good.

Figure 4(a) plots the normalized sensitivities (i.e., multiplied by the nominal value of
the sensitivity parameter and divided by the current value of the response quantity) of
the vertical uplift ν3 at midpoint of the non-loaded span to several material parameters
as function of the normalized vertical uplift (i.e., the ratio between the current vertical
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Figure 4 Normalized response sensitivities for steel-concrete composite structure: (a) sensitiv-
ities of vertical uplift at midpoint of non-loaded span to several material constitutive
parameters and (b) sensitivities of several response quantities to yield strength of the
steel of the beam component.

uplift and the maximum uplift which is reached at failure of the beam). The normalized
sensitivities can be used directly as importance measures of the sensitivity parameters
for the considered response quantity, since they represent the percent change in the
response per percent change in the parameter. In the case presented here, the yield
strength of the steel of the beam, fy, is the parameter affecting the most the vertical
uplift ν3. Figure 4(b) plots the normalized sensitivities of several response quantities to
parameter fy as functions of the normalized vertical uplift. The effects of parameter fy

are pronounced for ν3, but much less so for the rotations of the beam at the left and
central supports (ϕ1 and ϕ2, respectively).

2.4 Extension of the DDM to Soil-Foundation-Structure-
Interaction (SFSI) systems

The seismic excitation experienced by structures (buildings, bridges, etc.) is a func-
tion of the earthquake source (fault rupture mechanism), travel path effects, local site
effects, and SFSI effects. Irrespective of the presence of a structure, the local soil con-
ditions (stratification of subsurface materials) may change significantly, through their
dynamic filtering effects, the earthquake motion (seismic waves) from the bedrock level
to the ground surface. The complex and still poorly understood interactions between
subsurface materials, foundations, and the structure during the passage of seismic
waves is further significantly complicated by clouds of uncertainties associated with
the various components of a SFSI system as well as the seismic excitation.

The DDM has been extended to the analysis of SFSI systems. This extension required
development and implementation of response sensitivity algorithms for 2-dimensional
(quadrilateral) and 3-dimensional (brick) isoparametric finite elements, soil mater-
ials (such as the pressure-independent multi-yield surface plasticity model, see Prevost
1977, Gu et al. 2008b, c) and handling of multipoint constraints (Gu et al. 2008a)
required for properly connecting finite elements used in modelling the soil domain with
the ones used for the superstructure model (such as frame elements). A benchmark
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Figure 6 Benchmark SFSI system: (a) time histories of the soil interlayer drifts and (b) sensitivities
of the first interstory drift to the shear strengths of the soil layers.

SFSI system is presented in Figure 5. A detailed description of the superstructure can
be found in Barbato et al. (2006).

Figure 6(a) plots the time histories of the soil interlayer drifts in the x-direction,
while Figure 6(b) shows the first interstory drift in the x-direction, �1x, sensitivities
(multiplied by the nominal value of the sensitivity parameter) to the shear strength
parameter of each of the four soil layers. In this case, the parameters affecting the
most �1x are the shear strengths of the two deeper soil layers, since they govern the
energy transferred into the structure by the soil from the earthquake input at bedrock
level.
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2.5 Other computational issues in FE response
sensit iv ity analysis

The analytical derivation of FE response sensitivities requires a detailed knowledge of
the FE algorithms used for response-only computation, while the efficient computation
and reliable use of these sensitivities demand a clear understanding of the analytical
properties of the computed response and response sensitivities. These properties for
response sensitivities have been investigated in the context of specific applications such
as design point search in FE reliability analysis. Some of these properties are discussed
below.

A first important issue is the equivalence between two methods for computing FE
response sensitivities according to the DDM. Response sensitivities can be computed
(1) by differentiating analytically with respect to the sensitivity parameters the time-
and space-discrete equations of motion of the structural system considered or (2) by
obtaining the time-continuous, space-discrete differential equations governing the
response sensitivities and discretizing them in time to numerically compute the response
gradient. The conditions of equivalence of these two methods are given in Conte et al.
(2003). It is emphasized that consistent (or algorithmic) tangent moduli (leading to
consistent tangent stiffness matrices) are to be used in the first method instead of contin-
uum tangent moduli. For uniaxial material constitutive laws, consistent and continuum
tangent moduli coincide, which is not the case for multidimensional constitutive mod-
els. The consistent tangent moduli have been derived and successfully implemented in
FE codes for several multidimensional material constitutive models such as the cap-
plasticity model (Conte et al. 2003) (for concrete and geological materials) and the
multi-yield-surface plasticity model (Gu et al. 2008b) (for soil).

Continuity/smoothness of FE response sensitivities is another issue needing careful
examination, particularly when sensitivities are used in gradient-based optimization
algorithms. Gradient discontinuities are detrimental to the rate of convergence or can
even impair the convergence to a local minimum of gradient-based optimization algo-
rithms (Gill et al. 1981). It has been recognized that non-smooth material constitutive
models exhibit discontinuous response sensitivities corresponding to elastic-to-plastic
material state transitions (Conte et al. 2003, Haukaas & Der Kiureghian 2004) while
linear elastic unloading events do not produce response sensitivity discontinuities
(Haukaas & Der Kiureghian 2004). Recent work established a sufficient condition
on the smoothness properties of material constitutive models and loading functions
to ensure FE response sensitivity continuity (for both loading and unloading) along
the time and parameter axes in the case of quasi-static analysis (Barbato & Conte
2006). The same study also recognized that in the case of dynamic analysis, in add-
ition to smoothness conditions on the material constitutive models employed and the
loading functions, a sufficiently fine time-discretization (generally finer than the one
required for convergence of response-only computations) is required to avoid response
sensitivity discontinuities along the parameter axes.

Finally, the properties of FE response sensitivities have been studied in terms of
convergence to the response sensitivities corresponding to the (analytically unknown)
solution of the time- and space-continuous equations of motions (Gu & Conte, 2003).
The results of these studies indicate that convergence in response sensitivities requires
stricter conditions (i.e., finer spatial discretization and, to a lower degree, smaller
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load or time step size) than the ones required for convergence of response-only
calculations. It is noteworthy that gradient-based optimization algorithms require con-
sistent (and not necessarily converged) gradients in order to preserve the asymptotic
rate of superlinear convergence of quasi-Newton methods.

3 Simplif ied finite element probabilistic
response analysis

Probabilistic response analysis consists of computing the probabilistic characterization
of the response of a specific structure, given as input the probabilistic characterization
of material, geometric and loading parameters. An approximate method of probabilis-
tic response analysis is the mean-centred First-Order Second-Moment (FOSM) method,
in which mean values (first-order statistical moments), variances and covariances
(second-order statistical moments) of the response quantities of interest are estimated
by using a mean-centred, first-order Taylor series expansion of the response quantities
in terms of the random/uncertain model parameters. Thus, this method requires only
the knowledge of the first- and second-order statistical moments of the random param-
eters. It is noteworthy that often statistical information about the random parameters
is limited to first and second moments and therefore probabilistic response analysis
methods more advanced than FOSM analysis cannot be fully exploited.

Given the vector of n random parameters θ, the corresponding covariance matrix
�θ is defined as

�θ = [ρijσiσj]; i, j = 1, 2, . . . , n (1)

where ρij = correlation coefficient of random parameters θi and θj (ρii =1;
i=1, 2, . . . , n), and σi = standard deviation of random parameter θi. The vector r
of m response quantities of interest is approximated by a first-order truncation of its
Taylor series expansion in the random parameters θ about their mean values µθ as

r(θ) ≈ rlin(θ) = r(µθ) + ∇θr|θ=µθ
· (θ− µθ) (2)

The first- and second-order statistical moments of the response quantities r are
approximated by the corresponding moments of the above linearized response
quantities, i.e.,

µr ≈ µrlin = E[rlin(θ)] = r(µθ) + ∇θr|θ=µθ
· E[θ− µθ] = r(µθ) (3)

�r ≈ �rlin = E
[(

rlin(θ) − µrlin

) · (rlin(θ) − µrlin

)T] = ∇θr|θ=µθ
·�θ ·

(∇θr|θ=µθ

)T (4)

in which E[. . .]=mathematical expectation operator.
The approximate response statistics computed through Eqs. (3) and (4) are extremely

important in evaluating the variability of the response quantities of interest due to
the intrinsic uncertainty of the model parameters and provide information on the
statistical correlation between the different response quantities. It is noteworthy that
these approximate first- and second-order response statistics can be readily obtained
when response sensitivities evaluated at the mean values of the random parameters are
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available. Only a single FE analysis is needed in order to perform a FOSM probabilistic
response analysis, when the FE response sensitivities are computed using the DDM.
Probabilistic response analysis can also be performed using Monte Carlo simulation
(MCS). In this study, MCS is used to assess the accuracy of the FOSM approximations
in Eqs. (3) and (4) when applied to nonlinear FE response analysis of R/C building
structures characterized with random/uncertain material parameters and subjected to
quasi-static pushover. The MCS procedure requires:

1. Generation of N realizations of the n-dimensional random parameter vector θ

according to a given n-dimensional joint probability density function (PDF).
2. Computation by FE analysis of N response curves for each component of the

response vector r, corresponding to the N realizations of the random parameter
vector θ.

3. Statistical estimation of specified marginal and joint moments of the components
of response vector r at each load step of the FE response analysis.

MCS is a general and robust method for probabilistic response analysis, but it suffers
two significant limitations: (1) it requires knowledge of the full joint PDF of random
parameters θ, which, in general, is only partially known, and (2) it requires perform-
ing a usually large number of FE response analyses, which could be computationally
prohibitive.

In this study, the Nataf model (Ditlevsen & Madsen 1996) was used to generate
realizations of the random parameters θ. It requires specification of the marginal PDFs
of the random parameters θ and their correlation coefficients. It is therefore able to
reproduce the given first- and second-order statistical moments of random parame-
ters θ. The same three-dimensional three-story reinforced concrete building presented
in Section 2.4, but on rigid supports, is considered as application example. Table 1
provides the marginal distributions and their statistical parameters for the material
parameters modelled as correlated random variables. Other details on the modelling
of the structure and the statistical correlation of the random parameters can be found
in Barbato et al. (2006).

Table 1 Marginal PDFs of material parameters (statistical parameters for lognormal distribution:
(1) λ=µLn(X), (2) ζ= σLn(X); for beta distribution: (1) xmin, (2) xmax, (3) α1, (4) α2).

RV Distribution Par. #1 Par. #2 Par. #3 Par. #4 Mean c.o.v. [%]

fc,core [MPa] Lognormal 3.4412 0.1980 – – 34.47 20
εc,core [−] Lognormal −5.3973 0.1980 – – 0.005 20
fcu,core [MPa] Lognormal 3.0845 0.1980 – – 24.13 20
εcu,core [−] Lognormal −4.0110 0.1980 – – 0.02 20
fc,cover [MPa] Lognormal 3.2180 0.1980 – – 27.58 20
εc,cover [−] Lognormal −6.3136 0.1980 – – 0.002 20
εcu,cover [−] Lognormal −5.2150 0.1980 – – 0.006 20
fy [MPa] Beta 227.53 427.48 3.21 4.28 307.46 10.6
E [MPa] Lognormal 12.1946 0.0330 – – 201000 3.3
b [−] Lognormal −4.0110 0.1980 – – 0.02 20
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Figure 7 Comparison of probabilistic response analysis results for u3x obtained from FOSM and
MCS: (a) mean value ± one standard deviation and (b) standard deviation estimates.

Figure 7(a) compares the estimates of the mean value and mean value± one standard
deviation of the roof displacement in the x-direction, ux3, for a quasi-static pushover
analysis with an upper-triangular pattern of applied horizontal forces obtained using
FOSM and MCS. Figure 7(b) provides the estimates of the standard deviation of ux3

obtained from MCS and FOSM with sensitivities computed through DDM, back-
ward/forward finite differences (BFD and FFD, respectively, using a small perturbation
of each parameter), and the average of BFD and FFD. It is found that a DDM-based
FOSM analysis can provide, at low computational cost, estimates of the first- and
second-order response statistics which are in good agreement with significantly more
expensive MCS estimates when the frame structure experiences low-to-moderate mate-
rial nonlinearities. Further discussions of these results can be found elsewhere (Barbato
et al. 2006).

4 Finite element reliabil ity analysis

In general, the structural reliability problem consists of computing the probability
of failure Pf of a given structure, which is defined as the probability of exceeding
some limit-state (or damage-state) function(s) when the loading(s) and/or structural
properties and/or limit-state function parameters are uncertain quantities modelled
as random variables. This study focuses on component reliability problems, i.e., sin-
gle limit-state function (LSF) g= g(r, θ) where r= vector of response quantities of
interest and θ= vector of random variables considered. The LSF g is chosen such that
g≤0 defines the failure domain/region. Thus, the time-invariant component reliability
problem can be expressed mathematically as

Pf = P[g(r, θ) ≤ 0] =
∫

g(r,θ)≤0

p�(θ) dθ (5)
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where p�(θ)= joint PDF of random variables θ. For time-variant reliability problems,
an upper bound of the probability of failure, Pf(T), over the time interval [0, T], can
be obtained as

Pf(T) ≤
T∫

0

νg(t) dt (6)

where νg(t)=mean down-crossing rate of level zero of the LSF g and t= time. An
estimate of νg(t) can be obtained numerically from the limit form relation (Hagen &
Tvedt 1991)

νg(t) = lim
δt→0

P[{g(r(θ, t),θ) > 0} ∩ {g(r(θ, t + δt), θ) ≤ 0}]
δt

(7)

Numerical evaluation of the numerator of Eq. (7) reduces to a time-invariant two-
component parallel system reliability analysis. It is clear that the first part of Eq. (5)
represents the building block for the solution of both time-invariant and time-variant
reliability problems (Der Kiureghian 1996). Using Eq. (7), Poisson approximation
to the failure probability, Pf,Poisson(T), is obtained as (under the hypothesis that
P[g(r(θ, t=0), θ)>0]=1)

Pf,Poisson(T) = 1 − exp


−

T∫

0

νg(t) dt


 (8)

The problem posed in Eq. (5) is extremely challenging for real-world structures and
can be solved only in approximate ways. A well established methodology consists
of introducing a one-to-one mapping/transformation between the physical space of
variables θ and the standard normal space of variables y (Ditlevsen & Madsen 1996)
and then computing the probability of failure Pf as

Pf = P[G(y) ≤ 0] =
∫

G(y)≤0

ϕY(y) dy (9)

where ϕY (y)= standard normal joint PDF and G(y)= g(r(θ(y)),θ(y)) is the LSF in the
standard normal space. Solving the integral in Eq. (9) remains a formidable task, but
this new form of Pf is suitable for approximate solutions taking advantage of the
rotational symmetry of the standard normal joint PDF and its exponential decay in
both the radial and tangential directions. An optimum point at which to approximate
the limit-state surface (LSS) G(y)=0 is the “design point’’ (DP), which is defined as the
most likely failure point in the standard normal space, i.e., the point on the LSS that
is closest to the origin. Finding the DP is a crucial step for approximate methods to
evaluate the integral in Eq. (9), such as FORM and SORM and importance sampling
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(IS) (Breitung 1984, Der Kiureghian 1996, Au et al. 1999). The DP, y∗, is found as
solution of the following constrained optimization problem:

y∗ = arg {min (0.5yTy)|G(y) = 0} (10)

The most effective techniques for solving the above constrained optimization prob-
lem are gradient-based optimization algorithms (Gill et al. 1981, Liu & Der Kiureghian
1991) coupled with algorithms for accurate and efficient computation of the gradient
of the constraint function G(y), requiring computation of the sensitivities of response
quantities r to parameters θ. Using the implicit function theorem together with the
chain rule of differentiation for multi-variable functions, ∇yG can be obtained as

∇yG = (∇rg|θ · ∇θr + ∇θg|r) · ∇yθ (11)

where ∇rg|θ and ∇θg|r = gradients of LSF g with respect to its explicit depen-
dency on quantities r and θ, respectively, and usually can be computed analytically;
∇θr= sensitivities of response variables r to parameters θ, and ∇yθ= gradient of physi-
cal space parameters with respect to standard normal space parameters. For probability
distribution models defined analytically (with monotonically increasing joint CDF), the
gradient ∇yθ can also be derived analytically (Ditlevsen & Madsen 1996).

For real-world problems, the response simulation (computation of r for given θ) is
typically performed using advanced mechanics-based nonlinear computational models
developed based on the FE method. FE reliability analysis requires augmenting existing
FE formulations for response-only calculation to compute the response sensitivities,
∇θr, to parameters θ. As already seen in Section 2, an accurate and efficient way to
perform FE response sensitivity analysis is through the DDM.

4.1 Time-invariant rel iabi l i ty analysis

A time-invariant reliability analysis is performed on the same three-story reinforced
concrete building as in Sections 2.4 and 3, with the same probabilistic characterization
of the material constitutive parameters as well. In addition, the value of the maxi-
mum applied horizontal force (equal to the total base shear) is modelled as lognormal
random variable (see Figure 8(d)). A roof displacement ux3 =0.3 m (corresponding
to a roof drift ratio of 3.1%) is considered as failure condition. First, a DP search is
performed (see Figure 8(a)) and a FORM approximation of the probability of failure
is obtained. Then, using the DP found in the FORM analysis, a SORM estimate is
obtained by computing the first principal curvature at the DP of the LSS and correct-
ing the FORM approximation with Breitung’s formula (Breitung 1984). Finally, an
IS analysis is performed using as sampling distribution a joint standard normal PDF
centred at the DP. It is found that the SORM approximation is distinctly more accurate
than the FORM approximation and close to the IS analysis result, which is used here
as reference result (Figures 8(b) and (c)).

4.2 Time-variant rel iabi l i ty analysis

The methodology presented in Section 4 for time-variant reliability analysis has been
tested on simple structures. Mean up-crossing rates are estimated by FORM (Eq. (7)).
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Figure 9 Mean out-crossing computation for linear elastic structures subjected to white noise
from at rest initial conditions: (a) SDOF system (T= 0.31 s, ζ= 0.10), and (b) 3-DOF steel
building model (T1 = 0.38 s,T2 = 0.13 s,T3 = 0.09 s, ζ1 = ζ3 = 0.02, Rayleigh damping).

First, linear elastic SDOF and MDOF structures with at rest initial conditions are sub-
jected to white noise excitation. It is found that the mean up-crossing rates obtained
using FORM are in very good agreement with available closed-form solutions (Lutes &
Sarkani 1997) as shown in Figures 9(a) and (b) for SDOF and MDOF systems, respec-
tively, when a sufficiently small time-interval, dt, is used in discretizing the white noise
excitation process.

The same methodology is used for SDOF systems with a force-deformation rela-
tion modelled using a Menegotto-Pinto (MP) constitutive law (Menegotto & Pinto
1973). This constitutive law is calibrated to a shear-type single-story steel frame
with height H=3.20 m, bay length L=6.00 m and made of European HE340A steel
columns. The system is defined by the following parameters (taken as determinis-
tic): mass M=28800 kg, damping ratio ζ=0.02, initial stiffness K=40.56 kN/mm,
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Figure 10 Time-variant reliability analysis results for nonlinear hysteretic SDOF systems: (a) quasi-
linear behaviour and (b) significantly nonlinear behaviour.

initial yield force Fy0 =734 kN and post-yield to initial stiffness ratio b=0.05. This
SDOF system is subjected to two different input ground motions modelled as white
noises with power spectral density φ0 =0.035 m2/s3 and φ0 =0.25 m2/s3, respectively.
The expected cumulative number of up-crossings and time-variant failure probabil-
ity relative to the roof displacement exceeding the threshold ξ=0.016 m (roof drift
ratio=0.5%) and ξ=0.048 m (roof drift ratio=1.5%), respectively, are computed
using FORM and MCS. Figure 10(a) compares the estimates of the expected number of
up-crossings obtained using FORM and MCS (with ± one standard deviation interval
as well) for the case φ0 =0.035 m2/s3 and ξ=0.016 m, for which the structure behaves
quasi-linearly. Figure 10(a) also compares the time-variant failure probability estimates
obtained through the FORM-based Poisson approximation and MCS. Figure 10(b)
compares the same estimates as in Figure 10(a), but for the case φ0 =0.25 m2/s3 and
ξ=0.048 m, for which the structure yields significantly. The insets of Figures 10(a)
and (b) provide the DP force-displacement responses for 5.0 s of excitation.

For quasi-linear structural behaviour, the results in terms of expected cumulative
number of up-crossings obtained using FORM are in good agreement with the MCS
results. In this case, the difference between the FORM-based Poisson approxima-
tion and MCS estimate of the time-variant failure probability is mainly due to the
relatively high value of Pf, for which the Poisson assumption of statistically indepen-
dent up-crossing events is not valid. On the other hand, a FORM approximation
of the LSS for significantly nonlinear structural behaviour provides a very inaccu-
rate estimate of the expected cumulative number of up-crossings and therefore of
the time-variant failure probability. Thus, computationally efficient methodologies are
needed to take into account the nonlinear nature of the LSS for mean out-crossing rate
computation.
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4.3 Limit-state surface topology and
mult idimensional visual ization

Knowledge about the topology (in both the physical and standard normal spaces)
of the LSSs corresponding to a given reliability problem is extremely valuable in
(1) gaining physical and geometrical insight into the structural reliability problem
at hand, (2) analyzing the inaccuracies of the FORM/SORM approximations for
time-invariant probability of failure and mean out-crossing rate computation, and
(3) pointing to more efficient and accurate computational reliability methods for eval-
uating the probability content of typical failure domains. The study of the topology
of LSSs is a challenging task and requires visualization of nonlinear hyper-surfaces in
high-dimensional spaces (i.e., physical or standard normal space defined by random
parameters representing loading, geometric and material properties).

A new methodology, herein referred to as Multidimensional Visualization in the
Principal Planes (MVPP), is proposed for visualizing the shape of LSSs in FE reliability
analysis in the neighbourhood of the DP(s). The MVPP requires finding the trace of
the LSS in the planes of principal curvatures at the DP(s) (Principal Planes: PPs) in
decreasing order of magnitude of the principal curvatures. Each PP is defined by the
DP vector y∗ and one of the eigenvectors (Principal Direction: PD) of the following
Hessian matrix A (Der Kiureghian & De Stefano 1991)

A = Hred∥∥∥∇yG|y∗
∥∥∥

(12)

in which [Hred]i,j = [R ·H ·RT]i,j is the reduced Hessian, with i, j=1, 2, . . . , N−1 and
N=number of random parameters, H= (N×N) Hessian matrix of the LSF at the DP,
R=matrix of coordinate transformation so that the new reference system has the N-th

axis oriented as the DP vector y∗, and
∥∥∥∇yG|y∗

∥∥∥=Euclidean norm of the gradient

of the LSF at the DP. The PDs are sorted in decreasing order of magnitude of the
corresponding eigenvalues.

In this study, the Hessian matrix is obtained by forward finite difference calculations
applied to the DDM-based response sensitivities. For accurate FE models of realistic
structural systems with a large number of uncertain model parameters, this approach
for computing the Hessian matrix, which is then used to compute the major eigenval-
ues/eigenvectors, could be computationally prohibitive. Methods are under study for
obtaining computationally affordable approximations of the Hessian matrix able to
produce sufficiently accurate major eigenvalues/eigenvectors. In addition, the use of
an existing algorithm (Der Kiureghian & De Stefano 1991) for computing eigenvalues
(and corresponding eigenvectors) in order of decreasing magnitude without having to
compute the Hessian matrix is also being considered.

The MVPP methodology provides important information about the topology of the
LSS identifying a small number of dimensions which are of interest and thus requiring
a limited number of FE simulations to visualize the LSS.

4.4 New hybrid method for f inite element rel iabi l i ty analysis

As shown in Sections 4.1 and 4.2, FORM approximation of the LSS(s) can provide
a very crude estimate of the time-invariant and time-variant (using mean out-crossing
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rate computation) failure probability of a structural system exhibiting a strongly non-
linear material behaviour. Information about the topology of the LSS(s) near the DP(s)
can be used effectively in order to improve on the FORM approximation accounting
for nonlinearities in the LSF.

A currently under development hybrid time-invariant reliability method, referred
to herein as DP-RS-Sim method and able to enhance the FORM/SORM estimates of
time-invariant and time-variant failure probabilities for structural and/or geotechnical
systems, is briefly presented and illustrated below. The DP-RS-Sim method combines
(1) the DP search (used in FORM and SORM), (2) the Response Surface (RS) method to
approximate in analytical (polynomial) form the LSF near the DP, and (3) a simulation
technique (Sim), to be applied on the response surface representation of the actual LSF.

The proposed method is suitable, with minor variations, for both component and
system time-invariant reliability problems and for component mean out-crossing rate
computations. The main steps of the DP-RS-Sim method for time-invariant component
reliability analysis involving a LSS with a single DP are:

1. Search for the DP (step common to FORM, SORM and the MVPP method).
2. Computation of (few) PDs (step common to SORM with curvature fitting and the

MVPP method).
3. Use of RS method to approximate analytically the LSF near the DP as the sum of

a nonlinear part (in the few transformed variables defined by the DP vector and
the computed PDs) and a linear part (in the remaining transformed variables and
defined by the gradient at the DP). This step is unique to the proposed DP-RS-Sim
method.

4. Estimate of the time-invariant failure probability using crude MCS or any other
more advanced simulation technique (e.g., IS) applied on the analytical response
surface approximation of the actual LSF.

In time-invariant system reliability analysis, the DP-RS-Sim method requires repeat-
ing the first three steps defined above for each of the components (LSFs) and applying
the fourth step after forming a Boolean indicator which provides correspondence
between failures of the single components and failure of the system. Time-invariant
component reliability analysis with a LSS characterized by multiple DPs can be inter-
preted as a special case of a time-invariant system reliability problem, with the failure
domain given by the union of the failure domains defined by the response surfaces
approximating the original LSF in the neighbourhood of each of the DPs. Time-variant
component reliability analysis is treated using the DP-RS-Sim method to compute
the mean out-crossing rate with the limit relation in Eq. (7), in which the two LSSs
{g(r(θ, t),θ)=0} and {g(r(θ, t+ δt), θ)=0} are approximated at their DPs with the RS
method.

The use of the DP-RS-Sim method in the case of a time-variant reliability problem
is illustrated using the same MP SDOF system defined in Section 4.2 (with determin-
istic parameters) when subjected to white noise base excitation with power spectral
density φ0 =0.25 m2/s3 and displacement threshold ξ=0.048 m (corresponding to the
significantly nonlinear behaviour case in Section 4.2). Figures 11(a) and (b) provide
visualization of the LSSs at times t=1.0 s and t+ δt=1.001 s using the MVPP method
in the first and second PPs, respectively. The traces of these two LSSs (obtained as the
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Figure 11 Visualization of LSS by the MVPP method and different response surface approximations
for mean up-crossing rate computation at time t= 1.0 s for nonlinear hysteretic MP
SDOF system: (a) 1st PP and (b) 2nd PP.

zero level contour lines of the LSF simulated over a fine grid of points in each PP)
are compared with different response surface approximations, namely a 1st order
(FORM), 2nd order and 8th order polynomial approximation. It is seen that the
8th order response surface approximates the actual LSSs fairly well in the first PP
(Figure 11(a)) and very well in the second PP (Figure 11(b)).

The DP-RS-Sim method is applied to compute the time-variant failure probability
(for T=5.0 s) of the inelastic SDOF system defined above. The probability of fail-
ure is estimated by integrating numerically the mean out-crossing rate computed at
given instants of time (t=0.25 s, 0.5 s, 0.75 s, 1.0 s, 1.5 s, 2.0 s, 3.0 s, 4.0 s and 5.0 s).
The Gaussian white noise excitation is discretized with dt=0.01 s into 25, 50, 75,
100, 150, 200, 300, 400, and 500 random variables for these instants of time. Each
of the LSFs is approximated with a response surface obtained as the sum of an 8th
order polynomial in the four transformed variables defined by the DP vector and
the first three principal directions and a 1st order polynomial in the remaining vari-
ables (i.e., hyperplane tangent to the LSS at the DP). The probability content of the
hyper-wedge defined by the intersection of the two component failure domains, see
Eq. (7), is estimated via IS with sampling distribution centred at the DP. Figure 12 com-
pares the results obtained through crude MCS for the expected cumulative number of
up-crossings, E[N], and the failure probability, Pf, with the upper bound approxima-
tion of the failure probability obtained through FORM and DP-RS-Sim. The results
obtained show that the error due to the use of the analytical upper-bound to the prob-
ability of failure Pf is small, while the error due to the use of a FORM approximation
to E[N] is very high (error=266% at time t=5.0 s). The DP-RS-Sim method reduces
significantly the error by FORM, providing very good estimates of E[N] (error=16%
at time t=5.0 s) with a reasonable additional computational cost compared to FORM.
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Figure 12 Time-variant reliability analysis of nonlinear hysteretic MP SDOF system: comparison
of FORM and DP-RS-Sim (hybrid) method results with Monte Carlo (MC) simulation
results.

5 Conclusions

This study presents recent advances in finite element (FE) response sensitivity, simpli-
fied probabilistic response and reliability analyses of structural and/or geotechnical
systems. These developments are integrated into general-purpose frameworks for
nonlinear FE response analysis. The objective is to extend the analytical tools used
extensively by practicing engineers in order to propagate uncertainties through non-
linear static and dynamic analyses of actual structural and/or geotechnical systems to
obtain probabilistic estimates of their predicted performance. Extensions of the Direct
Differentiation Method (DDM) to nonlinear material FE models of structural and/or
geotechnical systems are presented.

The mean-centred First-Order Second-Moment (FOSM) method is presented as sim-
plified FE probabilistic response analysis method. The FOSM method is applied to
probabilistic nonlinear pushover analysis of a structural system. It is found that a
DDM-based FOSM analysis can provide, at low computational cost, estimates of
first- and second-order FE response statistics which are in good agreement with sig-
nificantly more expensive Monte Carlo simulation estimates when the frame structure
considered in this study experiences low-to-moderate material nonlinearities.

Time-invariant and time-variant reliability analysis capabilities are also illustrated.
The geometry of limit-state surfaces near the design point(s) (DPs) is explored in
reduced-dimension spaces defined by planes of major principal curvatures at the
DP, following a newly developed technique called Multidimensional Visualization in
the Principal Planes. This new geometrical insight explains the lack of accuracy of
FORM-based solutions in some cases and suggests the use of existing and development
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of new improved solution strategies. In particular, a new hybrid reliability method
referred to as the DP-RS-Sim method is presented and illustrated through an example
of mean out-crossing rate computation for a nonlinear hysteretic single-degree-of-
freedom system. The methodology presented in this work allows, in general, obtaining
at reasonable computational cost FE reliability analysis results that are sufficiently
accurate for engineering purposes.

Extension of the DP-RS-Sim method to nonlinear hysteretic multi-degree-of-freedom
FE models of actual structural and/or geotechnical systems is currently under study by
the authors.
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